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We study a hunting process for a target, in which the hunter tracks the goal by smelling odors it emits. The
odor intensity is supposed to decrease with the diffusion distance. The Monte Carlo experiment is carried out
on a two-dimensional square lattice. Having no idea of the location of the target, the hunter determines its
moves only by random attempts in each direction. By sorting the searching time in each simulation and
introducing a variablex to reflect the sequence of searching times, we obtain a curve with a wide plateau,
indicating the most probable time of successfully finding the target. The simulations reveal a scaling law for the
searching time versus the distance to the position of the target. The scaling exponent depends on the sensitivity
of the hunter. Our model may be a prototype in studying such searching processes as various food-foraging
behaviors of wild animals.
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In the past years, the diffusion-controlled reactions have
been extensively studied through random-walk models. Such
applications range from chemical processes, electronic scav-
enging and recombination, to electronic and vibrational en-
ergy transfer in condensed media[1–9]. Many works have
been devoted to the target annihilation problem, in which
randomly placed targets are annihilated by random walkers,
and its dual, the trapping problem[10,11]. Other models treat
hindered diffusion problems that involve random point ob-
stacles[12]. In these models, the tracer moves from site to
site on a lattice and falls into wells of various depths at the
sites. The tracer does not know the depth of a well before it
enters. Another possibility is a mountain model, in which all
sites are at zero energy and the barriers are on the bonds
joining the sites[13,14]. Generally, random-walk models are
ideally suited for computer simulations, a practical way to
obtain results, since for the vast majority of cases no purely
analytical method exists.

In this work, we focus on another class of random-walk
problems. We study the so-called target-hunting processes,
which frequently occur in biological systems, such as a shark
searching for food by smelling the blood in the ocean, or
honeybees flying in the countryside to locate the foraging
nectars[15–17], or in metabolic processes such as cell mo-
tion and chemotaxis[18–22]. It can be viewed as a target-
oriented problem, in which the hunters try to reach the tar-
gets by following some kind of behavior rules. In our model,
an active hunter is trying to find out a target that emits a
special kind of odor. The Monte Carlo simulations are car-
ried out on a two-dimensional square lattice. Since neither
the distance nor the direction of the target is presumed to be
known, the searcher should determine its moves by random
attempts in each direction, just as a snake turns its head from
side to side to test the variation of odor intensity. There is
some chance for the hunter to move in the wrong direction
because of randomness. Hence it is not a traditional biased
random walk. After sorting each searching process in a time
sequence, we obtain a curve with a wide plateau, indicating
the most probable time of successfully finding the target. By
fitting the numerical results, we find a scaling law for the
searching time dependence on the distance to the position of

the target. The scaling exponent is found to be dependent on
the sensitivity of the hunter. We consider that this scaling law
rarely happens in ordinary biased random walks.

The game rules are as follows. The hunter at the originO
is trying to find a target that emits a special kind of odor.
Since the hunter has no way to know the location of the
target, it randomly moves around its original position to test
the variation of the odor intensity.z0 is the present distance
of the hunter to the target whilez1 is the corresponding dis-
tance of the next attempted step. The Monte Carlo steps are
implemented as follows. Ifsz0/z1da.z, where the parameter
a reflects the sensitivity of the hunter andz is a random
number, then the attempt is accepted. Otherwise it is refused.
This rule implies that the intensity of the signal emitted by
the target is inversely proportional to the distance of the
hunter to the target. Other choices of the relation do not alter
the result qualitatively. In this way, the hunter approaches the
goal in a stochastic style.

Figure 1 displays a typical route of the hunter searching
for the target on a regular lattice. When the hunter is far
away from the goal, the ratioz0/z1 is close to 1. Most of the
moving attempts are accepted, even the hunter walks in the
wrong direction. The hunter appears to linger around for
quite a while. Hence the motion of the hunter is nearly a

FIG. 1. A typical hunting route on a square lattice. The start
point is at the origin and the target is at(25, 19).
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Brownian random walk. As the goal becomes nearer, the
ratio of z0/z1 gradually approaches 0.5 and the probability of
a move in the wrong direction being refused increases.
Hence the searching route seems more straightforward.

Figure 2 shows the searching time for each simulation for
a distance ofz=31.4 anda=6. It is understandable that the
searching times are different for different stochastic pro-
cesses. The distribution is not like a white noise. There are
large fluctuations away from the most probable searching
time. In Fig. 3, we plot the distribution of searching times for
z=31.4, 65.6, 137.1, 188.4, respectively. It is seen that the
distribution is not of the Poissonian form. The curve has a
very long time tail. Instead, a power relation is found for the
maximal value of the distribution with the most probable
time,

Vm , tp
−dm, s1d

with dm=1.05 for a=6.
There is another power relation between the distance of

the target and the most probable searching time,

tp , zdp, s2d

wheredp=1.77 for a=6.

In Fig. 4 we redistribute the data in Fig. 2 by sorting with
increasing time. Figure 4(a) is for various distancesz from
the origin, withz=31.4, 65.6, 137.1, 188.4 from bottom to
top anda=6. The horizonal axis is the sequence of searching
times represented as a percentage. A wide plateau is formed
in the intermediate range. Figure 4(b) shows that after proper
displacement all of the curves collapse into one, implying
that these curves are parallel to each other. Hence each curve
can be described by a single functionfsx,ad plus a
z-dependent functionfsz,ad,

ln tsx,z,ad = fsx,ad + fsz,ad s3d

with x the sequence of searching times represented as a per-
centage. The functionfsxd is Arabic ogivelike. It can be
checked that

ln tsÎz1z2,xd =
1

2
fln tsz1,xd + ln tsz2,xdg. s4d

Formulas3d can be written as

ln tsx,z,ad = fsx,ad + hsadln z. s5d

In Fig. 5 we study the dependence of the searching time
with respect to the sensitivity parametera. Figure 5(a) shows
the curves fora=4,8,12,16,20.After properly rescaling the
curves in(a) by times lnt with a coefficientab, whereb is
determined below, all of the curves become parallel. From

Fig. 5(b), we deduceab ln t= f̃sxd+f̃sz,ad. By comparing
with Eq. (5), one gets

ln tsx,z,ad = a−bfsxd + hsadln z. s6d

FIG. 2. Searching time for 10 000 simulations. The original dis-
tance to the target isz=31.4 and the sensitivity parametera=6.

FIG. 3. Searching time distribution for distancesz
=31.4,65.6,137.1,188.4, respectively.a=6.

FIG. 4. Time-sorted curves for 10 000 simulations. The horizon-
tal axis x is the sequence of searching times represented as a per-
centage and the vertical axis is logarithmic time.a=6. (a) is for
various distances z from the origin, with z
=31.4,65.6,137.1,188.4 from bottom to top. Evidently, the curves
consist of three parts, and a wide linear region is formed. These
curves are parallel to each other.(b) shows that after proper dis-
placement all the curves collapse into one.
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The indexb can be derived by considering the depen-
dence of the slopek2 of the plateau in Fig. 5(a) on parameter
a. There is a good linear relation between lnk2 and lna, as
show in the inset of Fig. 6,

ln k2 , − b ln a. s7d

We measuredb=0.623. It isnoteworthy thatb is a con-
stant independent of the sensitivity parametera. It results
from the stochastic process.

Finally, we tried to find the relation betweenh and a.
Figure 7(a) depicts the relation of lnt versus lnz at x=0.6 for
various parametersa. From Fig. 7(b),

ln hsad , − da s8d

with d=0.01.

Combining all the above factors, we consequently obtain
a complete relation for the searching time with respect to the
distance as well as the sensitivity parametera,

ln tsx,z,ad = a−bfsxd + c0e
−daln z, s9d

or

tsx,z,ad = efsxd/ab
zd. s10d

We find that there is a generalized scaling law betweent
andz with exponent

d = c0e
−da. s11d

From formulas2d, a=6, d=dp=1.77. We getc0=1.88.This
shows that the power-law exponent isa dependent. Asa
increases from zero to infinity, the exponent decreases
from 1.88 to zero. In Eq.s10d, the contributions of vari-
ablex, which sorts the searching time in each simulation,
are completely merged into a prefactor and the scaling
exponent isx independent. It should be noted that there is
a functional relation between the searching time and the
distance in such stochastic processes.

In summary, we introduced a variablex to denote the
sequence of searching times. We plot a curve with a wide
plateau, indicating the most probable time of successfully
finding the goal. Instead of calculating the mean square root,
we introduce a sorting parameterx to figure out an analytical
expression. The simulations reveal a scaling law for the
searching time versus the distance to the position of the tar-
get. The scaling exponent is dependent on the sensitivity of
the hunter. We believe that our treatment of the statistical
data may be useful in other cases. The existence of the scal-
ing law may have implications for the possibility for the
hunter to walk in a wrong direction or stay at the same place
for quite a while. This rarely happens in an ordinary biased
random walk. We point out that the results are valid not only
on the square lattice, but also for continuous movement(with

FIG. 5. Time-sorted curves for 10 000 simulations for various
parameter valuesa. The horizontal axisx is the sequence of search-
ing times represented as a percentage and the vertical axis is loga-
rithmic time. The original distance is fixed atz=31.4. (a) is for a
=4,8,12,16,20from top to bottom.(b) shows the rescaled curves
of (a) for a=4,8,12,16,20from bottom to top. These curves are
parallel to each other.

FIG. 6. The dependence of the slope of the plateau in Fig. 4 on
the parametera. The distancez=31.4. Inset: the linear relation of
the logarithmic slopek2 with logarithmica.

FIG. 7. (a) A plot of ln t versus lnz at x=0.6 for various param-
etersa. (b) The linear relation of lnhsad with respect toa.
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fixed step length) in the two-dimensional plane. However,
the explicit form of the functionfsxd is still lacking. It is also
desirable to deduce an analytical expression for Eq.(10)
from the first principles of statistics.

We suggest that the scaling law in the hunting process
may be an additional behavior rule in the food-foraging pro-
cesses of wild animals, which has not attracted much atten-
tion. In turn, verification of the law from direct observations
by zoologists or entomologists is also expected. Our target-

oriented model may be a prototype in studying the food-
foraging processes in wildlife as well as in other searching
games.
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